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Transition-metal-catalyzed asymmetric 1,4-addition of organo-
metallic reagents to R,�-unsaturated carbonyl compounds has been
rapidly developed over the past decade.1 On the contrary, progress
in asymmetric addition to extended conjugated systems (e.g., 1,6-
addition to R,�,γ,δ-unsaturated carbonyl compounds) has been
modest to date because of the difficulty of controlling the regiose-
lectivity as well as the enantioselectivity. Copper reagents and
catalysts are often used for selective 1,6-addition reactions,1-3 and
reports of asymmetric 1,6-addition reactions catalyzed by rhodium4

and copper have recently appeared.5-7 Successful examples of
asymmetric 1,6-addition to dienones and dienoates having �-sub-
stituents to suppress the competing 1,4-addition have been reported
by us (Rh),4 Fillion (Cu),5 and Alexakis (Cu).6 In 2008, Feringa
succeeded in the highly enantioselective 1,6-addition of alkyl
Grignard reagents to simple acyclic dienoates by use of a Cu/
bisphosphine catalyst.7 Here we report the enantioselective conju-
gate addition of arylboroxines to linear R,�,γ,δ-unsaturated carbonyl
compounds with perfect 1,6-selectivity, which is realized by the
use of a chiral iridium complex as a catalyst.8-10

We recently reported that perfect 1,6-selectivity is achieved in
the addition of arylboroxines to R,�,γ,δ-unsaturated carbonyl
compounds catalyzed by a hydroxoiridium complex coordinated
with 1,5-cyclooctadiene (cod).11 The findings prompted us to use
chiral diene ligands12 for the asymmetric variants of the iridium-
catalyzed 1,6-addition. Of chiral diene ligands in our hands, C2-
symmetric tetrafluorobenzobarrelenes (tfb’s)13 were found to display
high catalytic activity and enantioselectivity (Scheme 1 and entry
1 in Table 1). Thus, treatment of (3E,5E)-3,5-heptadien-2-one (1a)
with phenylboroxine (2m) (3 equiv of B) in the presence of
[IrCl((S,S)-Me-tfb*)]2

13b,14 (5 mol % Ir) and K2CO3 (5 mol %) in
MeOH at 30 °C for 20 h gave a 90% yield of a mixture of 1,6-
adducts consisting of (Z)-6-phenyl-4-hepten-2-one (3am) as the
major isomer, its E isomer 4am, and the conjugate enone 5am
(3am/4am/5am ) 86/10/4).15 The mixture was subjected to
isomerization mediated by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)
to give conjugate enone 5am as the major isomer (5am/4am )
94/6). Silica gel chromatography gave pure 5am in 85% yield
(based on 1a), whose ee was 99% (S).16 The use of phenyl- and
benzyl-substituted tfb ligands (Ph-tfb* and Bn-tfb*)13c gave, after
isomerization, 5am with 97 and 99% ee, respectively (Table 1,
entries2and3).Achiraldiene ligandhavingabicyclo[2.2.2]octadiene
framework (Bn-bod*)17 displayed high enantioselectivity (99% ee),
although the yield of 5am was moderate (56%) because of
incomplete conversion of starting enone 1a (entry 4). The ligand
(R)-L1,18 which is readily derived from a natural product, gave
5am in 97% ee (entry 5). The 1,6-addition was not observed at all
in the presence of iridium catalysts with bisphosphine ligands
(binap, segphos) or a phosphoramidite.19

The results obtained for the iridium-catalyzed 1,6-addition of
arylboroxines to dienones are summarized in Table 2. Phenylation
of dienones substituted with Et or tBu at the carbonyl carbon and

Me or Pr at the δ-position gave, after isomerization, the corre-
sponding conjugate enones 5bm-dm in good yields with g90%
ee (entries 2-4). Aryl groups having several substituents were
successfully introduced in the reactions of 1a or 1b with 2n-r,
giving the corresponding 1,6-addition products (5an, 5bn-br) in
good yields with very high enantioselectivity (98-99% ee; entries
5-10).

This iridium-catalyzed reaction can also be applied to conjugate
dienamides (1e and 1f) and a dienoate 1g to give, after hydrogena-
tion of the initially formed 1,6-adducts, the corresponding δ-arylated
amides and ester in high yields with high enantioselectivity (Table
3).

The present asymmetric 1,6-addition enables a short synthesis
of a natural product, curcumene20 (Scheme 2). Thus, rhodium-
catalyzed 1,4-hydrosilylation21 of conjugate enone 5an obtained

Scheme 1

Table 1. Ligand Screeninga

entry ligand (L*) isolated yield of 5am (%) ee (%)

1 (S,S)-Me-tfb* 85 99 (S)
2 (S,S)-Ph-tfb* 72 97 (S)
3 (S,S)-Bn-tfb* 73 99 (S)
4 (S,S)-Bn-bod* 56 99 (S)
5 (R)-L1 67 97 (R)

a Reaction conditions: dienone 1a (0.30 mmol), phenylboroxine (2m)
(0.30 mmol, 3 equiv of B), [IrCl(L*)]2 (5 mol % Ir), K2CO3 (5 mol %),
MeOH (0.90 mL). See the Supporting Information for details.
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with 99% ee (Table 2, entry 5) followed by triflation via a lithium
enolate gave alkenyl triflate 7. Iron-catalyzed cross-coupling22 with
MeMgBr gave (S)-curcumene (8) {[R]D

20 ) +48 (c 1.19, CHCl3);
lit20b [R]D

20 ) +43 (c 2, CHCl3) for (S)-curcumene}.
We also succeeded in the stereoselective synthesis of doubly

phenylated ketones by using rhodium-catalyzed asymmetric 1,4-
addition to conjugate enone 5am (Scheme 3). The use of a rhodium
complex coordinated with (S,S)-Me-tfb* in the asymmetric addition
of phenylboronic acid to 5am gave anti-diphenylated ketone 9,

while the use of (R,R)-Me-tfb* gave syn-adduct 10 with high
stereoselectivity.

In summary, we have developed an iridium-catalyzed asymmetric
1,6-addition of arylboroxines to R,�,γ,δ-unsaturated carbonyl
compounds that is realized by the use of an iridium/chiral diene
complex and gives δ-arylated carbonyl compounds in high yields
with high enantioselectivity.
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Table 2. 1,6-Addition to Dienonesa

entry R1 R2 Ar yield (%)b ee (%)

1 Me Me (1a) Ph (2m) 85 (5am) 99
2 Et Me (1b) Ph (2m) 84 (5bm) 98
3 tBu Me (1c) Ph (2m) 81 (5cm) 90
4 Et Pr (1d) Ph (2m) 57 (5dm) 97
5 Me Me (1a) 4-MeC6H4 (2n) 76 (5an) 99
6 Et Me (1b) 4-MeC6H4 (2n) 81 (5bn) 99
7 Et Me (1b) 3-MeC6H4 (2o) 85 (5bo) 99
8c Et Me (1b) 4-ClC6H4 (2p) 83 (5bp) 99
9c Et Me (1b) 4-FC6H4 (2q) 82 (5bq) 99
10 Et Me (1b) 2-naphthyl (2r) 76 (5br) 98

a See the Supporting Information for details. b Isolated yield.
c Reaction for 48 h.

Table 3. 1,6-Addition to Dienamides and a Dienoatea

entry X Ar yield (%)b ee (%)

1 NPh2 (1e) Ph (2m) 99 (6em) 93
2 NPh2 (1e) 4-MeC6H4 (2n) 95 (6en) 96
3 NPh2 (1e) 4-MeOC6H4 (2s) 96 (6es) 93
4 NMe(OMe) (1f) Ph (2m) 95 (6fm) 96
5c OtBu (1g) Ph (2m) 93 (6gm) 93

a Hydrogenation was carried out with [Ir(cod)(PCy3)(py)]PF6 (4 mol %)
for entries 1-4 and Pd/C (4 mol %) for entry 5. See the Supporting
Information for details. b Isolated yield of 6. c Reaction at 50 °C for
12 h.
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Scheme 3
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